
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5550 208

USB3.0 Driver Development for Embedded

Platforms which Currently support USB2.0

Chintan Vadaliya
1
, Urmil Vyas

2

Student, M.E. (Embedded System Design), GTU PG School, Gandhinagar, India1

Director, Sibridge Technologies, Ahmedabad, India2

Abstract: Universal Serial Bus 3.0(USB3.0) is the next major revision in USB standards which provides very high data

rate between PCs and devices. In this paper we are going to discuss how to enable USB3.0 support for embedded
boards which can support Mass Storage Function, HID Function and Video Function. For the development purpose we

are using Xilinx Zynq ZC702 Board as an embedded platform in which the new drivers will be loaded. So, in this work

the ZC702 Board operates as a mass storage device. Similarly in the case of HID and camera, the ZC702 Board

operates as a keyboard and camera device respectively.

Keywords: Universal Serial Bus(USB), Human Interface Device(HID), Mass Storage Device(MSD), Mass Storage

Class(MSC), Field-Programmable Gate Array(FPGA), FPGA Mezzanine Connector(FMC).

I. INTRODUCTION

Universal Serial Bus (USB) is a communication protocol

which is used for data connection and power supply
between computer and Peripheral Devices. USB3.0

introduces new transfer mode called ‘Super Speed’ which

is capable of providing data rate up to 5Gb/s which is ten

times faster than the USB2.0 high-speed(480 Mb/s)[1].

Very large number of devices are still using USB2.0

interface, so in order to enable the support for USB3.0,

significant changes are required at hardware level as well

as software level. In this work, we are using Xilinx Zynq

ZC702 board which only supports USB2.0 currently. We

are going to enable the support for USB3.0 in ZC702

board by connecting a daughter card with the board. The
daughter card will provide the required hardware support

for the USB3.0 interface. After that we are going to

develop the device drivers for the ZC702 board which will

provide software support for the USB3.0 interface.

II. TECHNICAL BACKGROUND

The USB architecture can be saturated in two parts:

Device and Host. Device can be a function which provide

specific capability. For example, USB keyboard provides

Human Interface Device(HID) functionality while a pen-

drive or HDD provides Mass Storage Device(MSD)

functionality. The devices are connected to the USB port

which will provide attachment with USB host controller.

Host will interact with the connected USB devices through

the USB host controller. USB host will control all the

activity in the USB system like detection of device,

configuration of device and removal of device etc. Host

will initiate all the transfer requests and the targeted device

will only answer the request[5].

Device and host will communicate with each other via
pipe. Pipe is a logical connection among device and host.

Pipe provides unidirectional or bidirectional path between

device and host. At device side the pipe is connected to an

endpoint.

Endpoint are like a IP socket. It is the source of the data.

Host initiate any transfer on a specific endpoint and

targeted device will only response on that endpoint.
Endpoints can be considered as interface between the

hardware and firmware of device.[5] Device firmware will

read/write data on endpoint and for hardware it will be the

source/destination to send/receive data. Every device has

at least one endpoint(EP0) which is also called as control

endpoint. EP0 is used to configure the device when its

attached. Multiple endpoints can be provided depending

on the functionality of the device. The logical connection

between host and device is shown in Fig. 1.

Fig. 1. Logical connection between device and host

USB devices has sets of descriptors which provides the
information about device functionality, device

manufacturer, supported USB version, numbers of

endpoint etc. The hierarchy of USB descriptors is shown

in Fig. 2[3].

Every device has only one device descriptor. Device

descriptor will provide the details such as supported USB

version, vendor and product ID and number of

configuration device can provide[3].

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5550 209

Configuration descriptor provides detail about the

particular configuration such as required amount of power,

device is self powered or bus powered and number of

Interface it can have. Device can have multiple

configuration descriptor as specified in device descriptor.

After the device is connected the host will request for the

device descriptor and then host can select the particular

configuration. Only one configuration can be enabled at a

time[3].

Fig. 2. Hierarchy of USB Descriptors

Device can have multiple interface descriptor as specified

in configuration descriptor. Each interface can represent a

feature of device. For example a multi-function device like

printer/scanner/fax can have multiple interfaces, one for

fax, one for printer and one for scanner. Device can have

multiple interfaces enabled at a time. Each Interface will

have one or more endpoint descriptor for different transfer

types and direction[3].

III. HARDWARE

A. Xilinx Zynq ZC702

Xilinx Zynq ZC702 board is used as a USB device in this

work. ZC702 provides embedded platform for the work

and also includes industry-standard FPGA Mezzanine

Connectors (FMC) which is used to connect and configure

the daughter card. The board has ARM Dual-Core Cortex-

A9 processor with Xilinx’s 28nm programmable logic and

has 1GB of RAM. ZC702 board has the support for

USB2.0 transceiver only[4].

Fig. 3. Xilinx Zynq ZC702 Board

B. Daughter Card(USB3.0 PHY)

The daughter card will be connected to the Xilinx Zynq

ZC702 board to provide the USB3.0 support. The daughter

card is consists of FMC, USB3.0 PHY core, CMOS sensor

connector and PS2 connector. The daughter card contains

the TUSB1310A which is a single port, 4.8Gbps USB3.0

physical layer transceiver. The block diagram of the

daughter card is shown in Fig. 4.

Fig. 4. Block Diagram of Daughter Card

IV. FIRMWARE

To enable the support for USB3.0 in the ZC702 board, we

have to add device drivers for the USB3.0. We are going
to use Linux kernel on the ZC702 board. ZC702 is an

ARM platform, so we have to compile the Linux source

using Xilinx ARM tool-chain after adding designed

USB3.0 controller driver. The Linux USB driver

framework is shown in Fig. 5[2].

Fig. 5. Linux USB Driver Framework

The block diagram of USB driver interface between host

and device is shown in Fig. 6.

Fig. 6. USB Driver Interface between Host and Device

A. USB Controller Driver

USB3.0 controller driver will work as a Hardware

Abstraction Layer(HAL) for the USB Device controller. In

this work, the daughter card connected to the ZC702 will

provide the USB3.0 device controller hardware. So, our

task is to create the USB3.0 device controller driver to
implement hardware specific routines which allows access

to controller registers, memory space and interrupts.

USB3.0 controller driver will be added into the Linux

source while compiling the source for the ARM platform.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5550 210

The drivers should be able to handle all the lower layer

request for the hardware like data transmit/receive, device

detection, speed detection, device management, allocating

device resources, accessing controller registers to handle

the USB transfer etc. The controller driver is also

responsible to manage the device state. The state diagram

of USB3.0 device is shown in Fig. 7[1].

Fig. 7. USB Device State Diagram

B. Composite Driver

Composite Drivers are used to handle USB standard

requests which are common for all the USB devices. It is
also used to bind the class driver with the USB controller

drivers. Some of the standard request which are handled in

composite driver are listed below[1]:

 USB_REQ_SET_DESCRIPTOR

 USB_REQ_GET_STATUS

 USB_REQ_SET_CONFIGURATION

 USB_REQ_GET_CONFIGURATION

 USB_REQ_SET_INTERFACE

 USB_REQ_GET_INTERFACE

 USB_REQ_SET_FEATURE

 USB_REQ_GET_FEATURE

C. Class Driver

USB interface can support different types of functionality
like Human Interface Device, Mass Storage Device, Audio

Device, Video Device etc. So each functionality is

considered as a USB class. Class driver provide the

functionality support for the targeted device.[2] In this

work, we are going to demonstrate the Mass Storage

Class(MSC) driver. Mass Storage Class driver handles all

file transfer operations between host and device. Some

standard request are listed below:

 INQUIRY

 MODE_SELECT

 MODE_SENCE

 READ

 WRITE

 READ_CAPACITY

 READ_TOC

 READ_FORMAT_CAPACITIES

V. TEST AND RESULT

For the testing purpose we are using Mass Storage

Class(MSC) driver. For this we have to provide any

storage medium to the host to connect to. We are having

1GB of RAM in Xilinx Zynq ZC702 board, so we will use

512MB as the physical memory for the board and

remaining 512MB will be used as the mass storage device.
For this we have to make changes in the kernel

configurations while compiling the Linux source. Once

that has been made, we should be able to connect the

512MB of storage space to the host PC via USB3.0

interface. The screen shot from the host PC is shown in

Fig. 8 after we connect the board to the USB3.0 port of the

host PC.

Fig. 8. USB3.0 Storage Device Mounted on Host PC

As you can see that the 512MB of removable storage

device is detected on the host PC. Now we will run the

data transfer test on the device using Crystal Disk Mark

disk benchmark software[7]. The result is shown in Fig. 9.

Fig. 9. Read/Write Speed on Storage Device

VI. CONCLUSION

We are able to provide the USB3.0 support in Xilinx Zync

ZC702 board by applying specific changes in

hardware(Daughter card) and Software(USB3.0 Controller

Driver). We can also add support for HID/Audio/Video

Class drivers. Similar can be done for other embedded

board to enhance the data connection speed using USB3.0

interface.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5550 211

ACKNOWLEDGMENT

I would like to thank Sibridge Technologies and especially

Urmil Vyas (Director), Bhavik Kothari(Mem. Of

Technical Staff), Piyush Mehta(Mem. Of Technical Staff)

and Tejas Patel(Associate Engineer) for their help and

support. It wouldn’t have been possible to do this work

without their guidance.

REFERENCES

[1]. Hewlett-Packard Company, Intel Corporation, Microsoft

Corporation, NEC Corporation, ST-NXP Wireless and Texas

Instruments. "Universal Serial Bus 3.0 Specification", 2nd Edition,

Nov2012

[2]. Rajaram Regupathy, "Bootstrap yourself with Linux-USB Stack",

30-Jul-2012, pp. 156-315.

[3]. Beyond Logic Ltd "USB in Nutshell" Website,2nd Edition,

Aug2011, http://www.beyondlogic.org/

[4]. www.xilinx.com/support/documentation/boards_and_kits/zc702_zv

ik/ug850-zc702-eval-bd.pdf

[5]. Jodeit M & Johns M. "USB Device Drivers: A Stepping Stone into

Your Kernel", Computer Network Defense (EC2ND), 2010

European Conference, pp. 46-52

[6]. www.usb.org/

[7]. http://crystalmark.info/software/CrystalDiskMark/

